The Birman-schwinger Principle on the Essential Spectrum

نویسنده

  • ALEXANDER PUSHNITSKI
چکیده

Let H0 and H be self-adjoint operators in a Hilbert space. We consider the spectral projections of H0 and H corresponding to a semi-infinite interval of the real line. We discuss the index of this pair of spectral projections and prove an identity which extends the Birman-Schwinger principle onto the essential spectrum. We also relate this index to the spectrum of the scattering matrix for the pair H0, H.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator Theoretic Methods for the Eigenvalue Counting Function in Spectral Gaps

Using the notion of spectral flow, we suggest a simple approach to various asymptotic problems involving eigenvalues in the gaps of the essential spectrum of selfadjoint operators. Our approach uses some elements of the spectral shift function theory. Using this approach, we provide generalisations and streamlined proofs of two results in this area already existing in the literature. We also gi...

متن کامل

The Birman-schwinger Principle in Von Neumann Algebras of Finite Type

We introduce a relative index for a pair of dissipative operators in a von Neumann algebra of finite type and prove an analog of the Birman-Schwinger principle in this setting. As an application of this result, revisiting the Birman-Krein formula in the abstract scattering theory, we represent the de la Harpe-Skandalis determinant of the characteristic function of dissipative operators in the a...

متن کامل

On the Spectral Properties of Dirac Operators with Electrostatic Δ-shell Interactions

In this paper the spectral properties of Dirac operators Aη with electrostatic δ-shell interactions of constant strength η supported on compact smooth surfaces in R3 are studied. Making use of boundary triple techniques a Krein type resolvent formula and a Birman-Schwinger principle are obtained. With the help of these tools some spectral, scattering, and asymptotic properties of Aη are investi...

متن کامل

Entropy Numbers in Weighted Function Spaces and Eigenvalue Distributions of Some Degenerate Pseudodiierential Operators Ii

This paper is the continuation of 17]. We investigate mapping and spectral properties of pseudodiierential operators of type 1;; with 2 IR and 0 1 in the weighted function spaces B s p;q (IR n ; w(x)) and F s p;q (IR n ; w(x)) treated in 17]. Furthermore we study the distribution of eigenvalues and the behaviour of corresponding root spaces for degenerate pseudodiierential operators preferably ...

متن کامل

Leaky quantum wire and dots: a resonance model

We discuss a model of a leaky quantum wire and a family of quantum dots described by Laplacian in L(R) with an attractive singular perturbation supported by a line and a finite number of points. The discrete spectrum is shown to be nonempty, and furthermore, the resonance problem can be explicitly solved in this setting; by Birman-Schwinger method it is reformulated into a Friedrichs-type model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010